meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
a_mechanik:kippender_besenstiel:gruppenseiten:gruppe351:start [24 January 2021 21:40] – [Auswertung der Messergebnisse] nelemarieknoopa_mechanik:kippender_besenstiel:gruppenseiten:gruppe351:start [24 January 2021 22:46] (current) – [Auswertung der Messergebnisse] tobiasotte
Line 114: Line 114:
 {{ :a_mechanik:kippender_besenstiel:gruppenseiten:gruppe351:programm_zur_modellierung_des_kippenden_besenstiels.pdf |}} {{ :a_mechanik:kippender_besenstiel:gruppenseiten:gruppe351:programm_zur_modellierung_des_kippenden_besenstiels.pdf |}}
  
-Bei diesem Versuch gibt es zwei Kräfte. Zum einen gibt es die Erdanziehungskraft, welche den Stiel in Richtung Boden beschleunigt, und zu anderen eine Zwangskraft, welche durch die Stabilität des Stiels entsteht. Diese Zwangskraft sorgt dafür, dass jeder Punkt auf dem Besenstiel immer den selben Abstand zu dem Punkt hat, auf welchem der Besenstiel aufliegt. Stellt man den Besen nun im 90° Winkel hin, so wirkt die Erdanziehung gerade Richtung Boden und und die Zwangskraft dieser genau entgegen. Dabei gleichen sich die beiden Kräfte genau aus und der Besen kippt ohne äußere Einwirkung nicht um. Lenkt man nun Das System ein wenig aus, so wirkt die Zwangskraft der Erdanziehung nicht mehr direkt entgegen und das System wird Richtung Boden beschleunigt. Nun muss aber durch die Zwangskraft des Stiels der Abstand zum Aufsetzpunkt immer gleich bleiben muss, wird ein Teil dieser Beschleunigung zur Seite gelenkt, wodurch eine Kippbewegung entsteht. Nun wirkt die Zwangskraft aber immer vom Boden in Richtung des Stiels. Wenn man also die Auslenkung erhöht, so verringert man den Anteil, welcher der Erdanziehung entgegen wirkt. Dadurch erhöht sich die Beschleunigung Richtung Boden je weiter das System ausgelenkt ist. Also erhöht sich während der Kippbewegung im System die Beschleunigung, was sich im Computerprogramm auch widerspiegelt. Das Ende der Kurve hingegen lässt sich darüber erklären, dass die Höhe des äußersten Punktes abnimmt. Dadurch wird die Zeit der Beschleunigung bis zu Aufschlag reduziert und damit auch die Durschnittliche Geschwindigkeit.Damit wird der Weg der in einem Zeitintervall überwunden wird geringer und der Abfallder Kurve wird geringer. Dadurch entsteht ein Ende, wie beim freien Fall, was einem exponentiellen Abfall ähnelt. Dabei entsteht durch die Überlagerung beider Situationen der hier vorhandene quasi logarithmische Verlauf.+ 
 + 
 ====== Grafiken ====== ====== Grafiken ======
  
 ===== Besenstiel 1 ===== ===== Besenstiel 1 =====
  
-{{:a_mechanik:kippender_besenstiel:gruppenseiten:gruppe351:1425.jpg?nolink&400|}}+{{:a_mechanik:kippender_besenstiel:gruppenseiten:gruppe351:1425.jpg?nolink&600|}}
 ===== Besenstiel 2 ===== ===== Besenstiel 2 =====
  
-{{:a_mechanik:kippender_besenstiel:gruppenseiten:gruppe351:123.jpg?nolink&400|}}+{{:a_mechanik:kippender_besenstiel:gruppenseiten:gruppe351:123.jpg?nolink&600|}} 
 + 
 +===== Vergleich zum Zeitschrittverfahren ===== 
 + 
 +{{:a_mechanik:kippender_besenstiel:gruppenseiten:gruppe351:zeitschritt.jpg?nolink&600|}} 
 ====== Auswertung der Messergebnisse ====== ====== Auswertung der Messergebnisse ======
  
 Bei dem Besenstiel handelt es sich um einen starren Körper und bei der Kippbewegung um eine Rotation um eine Achse auf dem Boden senkrecht zu Fallrichtung und dem stehenden Besenstiel. Nun kann das System über die Energie definiert werden. Dabei lässt sich die potentielle Energie im System eines starren Körpers m*g* h, wobei h die Höhe des Schwerpunktes, g die Erdbeschleunigung und m die Masse definiert. Da der Stiel näherungsweise eine Gleichmäßige Massenverteilung beinhaltet ist das hier die halbe Stiellänge l/2. Bei dem Besenstiel handelt es sich um einen starren Körper und bei der Kippbewegung um eine Rotation um eine Achse auf dem Boden senkrecht zu Fallrichtung und dem stehenden Besenstiel. Nun kann das System über die Energie definiert werden. Dabei lässt sich die potentielle Energie im System eines starren Körpers m*g* h, wobei h die Höhe des Schwerpunktes, g die Erdbeschleunigung und m die Masse definiert. Da der Stiel näherungsweise eine Gleichmäßige Massenverteilung beinhaltet ist das hier die halbe Stiellänge l/2.
-Für die kinetische Energie T hingegen gilt bei starren Körpern T= ½ * I * w^2, wobei I für das Trägheitsmoment des Stabs, was bei der Rotation durch I = ½ m * l^2 und w die Winkelgeschwindigkeit  beschreibt. Steht der Stiel gerade, so gibt es keine kinetische Energie und die potentielle Energie beläuft sich auf l/2. Fängt der Besen in zu kippen so verringert sich die Höhe und man erhält eine kinetische Energie. Bildet man nun geometrisch betrachtet ein Dreieck zwischen Hochachse und dem gekippten Stiel spannt, kann man die Höhe vom Auslenkungswinkel phi und der halbe Stablänge abhähngig machen. Dabei ergibt sich die Höhe von l/2 * cos(phi). Da aber in diesem System die Energie erhalten bleibt folgt dabei:  m*g* l/2 =  m*g* l/2 * cos(phi) +  ½ * ½ m * l^2 * w^2. Dabei kürzt sich die Masse aus der Gleichung raus. Stellt man nun die Formel nach der w um so ergibt sich: w = Wurzel((3(g-g*cos(phi)))/l) = Wurzel((3g(1-cos(phi)))/l). In diesem Falle kann die Länge l auf jeden Punkt des Stiels übertragen werden. Diese entspricht hier nämlich dem Abstand zum Boden.+Für die kinetische Energie T hingegen gilt bei starren Körpern T= ½ * I * w^2, wobei I für das Trägheitsmoment des Stabs, was bei der Rotation durch I = ½ m * l^2 und w die Winkelgeschwindigkeit  beschreibt. Steht der Stiel gerade, so gibt es keine kinetische Energie und die potentielle Energie beläuft sich auf l/2. Fängt der Besen in zu kippen so verringert sich die Höhe und man erhält eine kinetische Energie. Bildet man nun geometrisch betrachtet ein Dreieck zwischen Hochachse und dem gekippten Stiel spannt, kann man die Höhe vom Auslenkungswinkel phi und der halbe Stablänge abhähngig machen. Dabei ergibt sich die Höhe von l/2 * cos(phi). Da aber in diesem System die Energie erhalten bleibt folgt dabei:  m*g* l/2 =  m*g* l/2 * cos(phi) +  ½ * ½ m * l^2 * w^2. Dabei kürzt sich die Masse aus der Gleichung raus. Stellt man nun die Formel nach der w um so ergibt sich: w = Wurzel((3(g-g*cos(phi)))/l) = Wurzel((3g(1-cos(phi)))/l). In diesem Falle kann die Länge l auf jeden Punkt des Stiels übertragen werden. Diese entspricht hier nämlich dem Abstand zum Boden. Nimmt man nun Phi=90°, kommt raus:  
 +v=w*l=l*Sqrt[3*g/l]=Sqrt[3*g*l]. Vergleicht man dies mit der Formel für den freien Fall: 
 +v=Sqrt[2*g*h], fällt auf dass die Formeln sich dadurch unterscheiden, dass bei dem Besenstiel Die Wurzel von 3 anstatt 2 mal der Länge des Besenstiels, anstatt der Höhe des Punktes (was in dem Fall aber äquivalent ist), mal der Erdbeschleunigung genommen wird. Der einzige Unterschied ist also, dass bei der Besenstielspitze die Wurzel von 3*g*h genomen wird und beim freien Fall der Punktmasse die Wurzel von 2*g*h, die Geschwindigkeit bei der Besenstielspitze also höher ist
  
-Betrachtet man nun den Verlauf des kippenden Besenstiels, so stellt man fest, dass bei der Fall bei kleinen Winkel für die Fallzeit erst immer schneller abnimmt, diese Entwicklung dann immer weiter abflacht, bis dann irgendwann der Abfall der Zeit immer geringer wird. Dies lässt sich mit der Höhe und der Geschwindigkeit des Falls erklären. Wenn man nämlich die Formel von der Theorie mit einem Startwinkel ausstattetso erhält man einfach in der Wurzel statt “1-cos(phi)“ „cos(Phi0)-cos(phi1)“. Das bedeutet das am Ende die maximale Geschwindigkeit geringer wird und damit auch die durchschnittliche Geschwindigkeit abnimmtNun verändert sich zum Winkel aber auch die Fallhöhe. „(Betrachtet man den Fall von beispielsweise den äußersten Punktes des Stiels, so kann man die Bahn dieses Massenpunktes als eine Kreisbahn beschreiben welche im höchsten Punkt startet und in diesem Falle mit dem Uhrzeigersinn fällt. Wenn man aber auf diesem Kreis sich nur wenig vom höchsten Punkt sich entfernt nimmt die Höhe nur ein wenig an. Wenn man sich aber weiter entfernt nimmt dieser Abfall der Höhe immer mehr zu. Nun ist hier beides gleichzeitig vorhanden. Also ist bei kleineren Startwinkeln die Steigung der Geschwindigkeit stärker, als der Höhenunterschied. Bei größeren Winkeln wird dieser Unterschied immer kleiner bis am Ende der Verlust der Höhe stärker ist als der Gewinn an Beschleunigung)“+Bei der Berechnung der Geschwindigkeit geht die Abhängigkeit von der Masse durch kürzen verlorenweshalb beim betrachten der Kippbewegung ohne Reibung die Masse keine Relevanz hat.
  
 +Betrachtet man nun den Verlauf des kippenden Besenstiels, so stellt man fest, dass bei der Fall bei kleinen Winkel für die Fallzeit erst immer schneller abnimmt, diese Entwicklung dann immer weiter abflacht, bis dann irgendwann der Abfall der Zeit immer geringer wird. Dies lässt sich mit der Höhe und der Geschwindigkeit des Falls erklären. Wenn man nämlich die Formel von der Theorie mit einem Startwinkel ausstattet, so erhält man einfach in der Wurzel statt “1-cos(phi)“ „cos(Phi 0)-cos(phi 1)“. Das bedeutet das am Ende die maximale Geschwindigkeit geringer wird und damit auch die durchschnittliche Geschwindigkeit abnimmt. Nun verändert sich zum Winkel aber auch die Fallhöhe. Betrachtet man den Fall von beispielsweise den äußersten Punktes des Stiels, so kann man die Bahn dieses Massenpunktes als eine Kreisbahn beschreiben welche im höchsten Punkt startet und in diesem Falle mit dem Uhrzeigersinn fällt. Wenn man aber auf diesem Kreis sich nur wenig vom höchsten Punkt sich entfernt nimmt die Höhe nur ein wenig an. Wenn man sich aber weiter entfernt nimmt dieser Abfall der Höhe immer mehr zu. Nun ist hier beides gleichzeitig vorhanden. Also ist bei kleineren Startwinkeln die Steigung der Geschwindigkeit stärker, als der Höhenunterschied. Bei größeren Winkeln wird dieser Unterschied immer kleiner bis am Ende der Verlust der Höhe stärker ist als der Gewinn an Beschleunigung, wodurch der Abfall quasi logarithmisch wird.
  
-Der Stab fällt mit der potentiellen Energie E=m*g*l/2, diese wird dazu in kinetische Energie umgewandelt. Am Anfang sieht man, dass die Zeit des Falls ab einem bestimmten Winkel erst stark abnimmt und dann diese verringerte Zeit immer weniger wird. Je größer dabei die Stablänge und kleiner der Startwinkel sind, desto länger dauert der Fall also. Aus diesem Grund sollte ein möglichst langer Stab verwendet werden, welcher möglichst nahe am 90° Winkel balanciert wird. Wen der Jongleur es sich möglichst leicht machen willso nimmt er zum einen einen großen Stiehl wählt, da dann mehr Reaktionszeit für die Gegenbewegung vorhanden ist. Dann sollte er probieren den Auslenkungswinkel gering zu halten, da bei größerem Winkel die Beschleunigung Zeit weniger wird. Leichter wird das Balancieren außerdem, sollte man ihn quer auf 2 Finger legen und diese zusammenschieben, bis der Schwerpunkt erreicht ist.+Je größer die Stablänge und kleiner der Startwinkel sind, desto länger dauert der Fall also. Aus diesem Grund sollte der Jongleur einen möglichst langnr Stab verwendendenn dann hat er mehr Zeit für Gegenbewegungen. Dann sollte er probieren den Auslenkungswinkel gering zu halten, da bei größerem Winkel die Beschleunigungszeit weniger wird. Leichter wird das Balancieren außerdem, sollte man ihn quer auf 2 Finger legen und diese zusammenschieben, bis der Schwerpunkt erreicht ist
 + 
 +Im letzten Graphen wurde bei gleichen Eingaben bezüglich des Stiels die Zeitschritte vergrößert. Dabei lässt sich beobachten, dass bei größeren Zeitschritten der Graph kantiger ist als bei kleineren Schritten. Dies lässt sich damit erklären, dass bei großen Zeitschritten auch mehr Zeit nötig ist, um eine Änderung festzustellen. Dadurch entstehen bei gleichbleibender Anzahl der Werte und zu hohen Zeitschritten irgendwann zwei Zeiten im gleichen Intervall und somit mit gleichem Wert. Dadurch entsteht dann der Stufenartige Teil der Funktion. Außerdem wird der Graph auch ungenauer, weil er zu weniger Zeiten eine Veränderung zeigt.
 ====== Einfluss der Reibung ====== ====== Einfluss der Reibung ======
  
Line 159: Line 171:
 ===== Auswertung ===== ===== Auswertung =====
  
-Das Gewicht des Stabes spielt ohne Luftwiederstand keine Rolle, mit Luftwiederstand jedoch die Beschaffenheit dieses, da der Besenstiel dann ausgebremst wird und immer langsamer fällt. Dies wird von diesem Versuch bestätigt+Das Gewicht des Stabes spielt ohne Luftwiederstand keine Rolle, mit Luftwiederstand jedoch die Beschaffenheit dieses, da der Besenstiel dann ausgebremst wird und immer langsamer fällt. Dies wird von diesem Versuch bestätigt, denn die Fallzeiten des Besenstiels mit der Pappe sind längerals die ohne Pappe.
- +
-====== Fazit ====== +
- +
-===== Beschreibung des Verlaufs der Kurve: ===== +
- +
- +
-Am Anfang sieht mandass die Zeit des Falls ab einem bestimmten Winkel erst stark abnimmt und dann diese verringerte Zeit immer weniger wird. +
- +
-===== Vergleich zum freier Fall und Kippbewegung: ===== +
- +
- +
-In beiden Fällen wird ein Objekt durch die Erdanziehung beschleunigt. Allerdings ist das beim freien Fall die einzige relevante Komponente, welche die Fallbewegung beschreibt. Bei der Kippbewegung hingegen gibt es noch die Zwangskraft durch die Stabilität des Stiels. Diese sorgt zum einen für einen langsameren Fall wenn man nur die Höhere betrachtet und zum anderen für eine Auslenkung zur Seite, da ein einzelner Punkt im Systems des Stiels immer den selben Abstand zum Nullpunkt behält. +
- +
-===== Theoretische Beschreibung des kippenden Besenstiels ohne Reibung: ===== +
- +
- +
-Bei diesem Versuch gibt es zwei Kräfte. Zum einen gibt es die Erdanziehungskraft, welche den Stiel in Richtung Boden beschleunigt, und zu anderen eine Zwangskraft, welche durch die Stabilität des Stiels entsteht. Diese Zwangskraft sorgt dafür, dass jeder Punkt auf dem Besenstiel immer den selben Abstand zu dem Punkt hat, auf welchem der Besenstiel aufliegt. Stellt man den Besen nun im 90° Winkel hinso wirkt die Erdanziehung gerade Richtung Boden und und die Zwangskraft dieser genau entgegen. Dabei gleichen sich die beiden Kräfte genau aus und der Besen kippt ohne äußere Einwirkung nicht um. Lenkt man nun Das System ein wenig aus, so wirkt die Zwangskraft der Erdanziehung nicht mehr direkt entgegen und das System wird Richtung Boden beschleunigt. Nun muss aber durch die Zwangskraft des Stiels der Abstand zum Aufsetzpunkt immer gleich bleiben muss, wird ein Teil dieser Beschleunigung zur Seite gelenkt, wodurch eine Kippbewegung entsteht. Nun wirkt die Zwangskraft aber immer vom Boden in Richtung des Stiels. Wenn man also die Auslenkung erhöht, so verringert man den Anteil, welcher der Erdanziehung entgegen wirkt. Dadurch erhöht sich die Beschleunigung Richtung Boden je weiter das System ausgelenkt ist. Also erhöht sich während der Kippbewegung im System die Beschleunigung, was sich im Computerprogramm auch widerspiegelt. Das Ende der Kurve hingegen lässt sich darüber erklären, dass die Höhe des äußersten Punktes abnimmt. Dadurch wird die Zeit der Beschleunigung bis zu Aufschlag reduziert und damit auch die Durschnittliche Geschwindigkeit.Damit wird der Weg der in einem Zeitintervall überwunden wird geringer und der Abfallder Kurve wird geringer. Dadurch entsteht ein Ende, wie beim freien Fall, was einem exponentiellen Abfall ähnelt. Dabei entsteht durch die Überlagerung beider Situationen der hier vorhandene quasi logarithmische Verlauf. +
- +
- +
-===== Massenunabhängigkeit der Fallbewegung ohne Reibung: ===== +
- +
- +
-Wie in der Theorie beschrieben wird der Besen durch die Erdanziehung in Richtung des Bodens beschleunigt und durch eine Zwangskraft wird diese Kraft reduziert. Nun ist aus dem freien Fall bekannt, dass die Masse für die Zeit des Falls nicht relevant ist, sondern nur die Kraft, die beim Aufprall auf dem Boden wirkt. Nun ist aber auch die Beschleunigung durch die Zwangskraft nicht massenabhängig, da diese ja nur den Abstand zum Nullpunkt erhält. Deshalb ist die Fallzeit des Versuch ohne Reibung nicht von der Masse abhängig. Da die Reibung in diesem Versuch nach der Erkenntnis einer Messung bei größeren Änderungen nicht besonders groß ausfällt wird hier also von Massenunabhängigkeit im Versuch ausgegangen. +
- +
-===== Ergebnis für den Jongleur:===== +
- +
-Wen der Jongleur es sich möglichst leicht machen will, so nimmt er zum einen einen großen Stiehl wählt, da dann mehr Reaktionszeit für die Gegenbewegung vorhanden ist. Dann sollte er probieren den Auslenkungswinkel gering zu halten, da bei größerem Winkel die Beschleunigung Zeit weniger wird.+