meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
b_waermelehre:p-v-diagramm [ 3 May 2013 12:53] schreiberb_waermelehre:p-v-diagramm [18 April 2022 18:20] (current) – ↷ Links adapted because of a move operation knaak@iqo.uni-hannover.de
Line 2: Line 2:
 ===== Allgemeines ===== ===== Allgemeines =====
 [{{ :b_waermelehre:pv_w.jpg?200|Isothermen im p-V-Diagramm haben hyperbolische Form.}}] [{{ :b_waermelehre:pv_w.jpg?200|Isothermen im p-V-Diagramm haben hyperbolische Form.}}]
-Das Druck-Volumen-Diagramm gibt den Zustand eines Gases an. Dabei sind Isothermen erkennbar an ihrer hyperbolischen Form, Isobare also horizontale Linien und Isochore als vertikale Linien.+Das **Druck-Volumen-Diagramm** gibt den Zustand eines Gases an und kann benutzt werden um den [[b_waermelehre:ideales_gas&#anwendung_der_allgemeinen_gasgleichung|Arbeitsgewinn]] z.B. eines Kreisprozesses zu bestimmen
  
-Häufig werden p-V-Diagramme genutzt um Prozesse darzustellen und daraus den Energiegewinn zu bestimmenEinem Prozess der einer geschlossenen Kurve im p-V-Diagramm folgt, einem sogenannten Kreisprozess, wird mindestens an einer Stelle Wärme (Energie) zugeführt und an einer Stelle Wärme abgeführt. Die eingeschlossene Fläche ist dabei ein Maß für die verrichtete Arbeit des Systems.+Im Diagramm lassen sich leicht die Arten von thermodynamischen Prozessen erkennen: [[archiv:quasi-wikipedia:begriffe#isotherm|Isothermen]] haben eine hyperbolischen Form, [[archiv:quasi-wikipedia:begriffe#isobar|Isobare]] sind horizontale Linien und [[archiv:quasi-wikipedia:begriffe#isochor|Isochore]] sind vertikale LinienWie in der nebenstehenden Grafik zu sehen, gehen Prozesse mit nicht-hyperbolischer Form immer mit einer Änderung der Temperatur einher.
  
 +<note tip>Walter Fendt hat eine sehenswerte Java-Applet zum spielen mit isobaren, isochoren und isothermen Zustandsänderungen. 
 +[[http://www.walter-fendt.de/ph14d/gasgesetz.htm]]</note>
 +===== Kreisprozesse =====
 +[{{ :b_waermelehre:carnot.png?200|Beispiel eines Kreisprozesses im p-V-Diagramm.}}]
 +Häufig werden p-V-Diagramme genutzt um Kreisprozesse darzustellen und den Energiegewinn eines Prozesses zu bestimmen. Dies sind Prozesse die im p-V-Diagramm einer geschlossenen Kurve folgen. Einem Prozess wird dabei mindestens an einer Stelle Wärme (Energie) zugeführt und an einer anderen Stelle Wärme entzogen. Die eingeschlossene Fläche ist dabei ein Maß für die verrichtete Arbeit des Systems. Ein idealer Kreisprozess ist der [[Carnot-Prozess]], der das Optimum einer Wärmekraftmaschine darstellt.
  
 +Kreisprozesse besitzen in allen Parameter-Diagrammen eine geschlossene Kurve, z.B. auch in p-T-Diagrammen.
  
 +===== Sättigungsgebiet =====
 +[{{ :b_waermelehre:dummysaettigungsgebiet.png?200|}}]
 +Das Sättigungsgebiet ist ein Bereich im p-V-Diagramm in dem Gas und Flüssigkeit gleichzeitig existieren (koexistieren) und Kennzeichnet einen Phasenübergang. Am [[b_waermelehre:p-t-diagramm&#kritischer_punkt|kritischen Punkt]] endet dieses Gebiet und ein flüssiger Zustand kommt nicht mehr vor. Zum vergleich, im [[b_waermelehre:p-t-diagramm|p-T-Diagramm]] ist das Sättigungsgebiet die Linie die den [[b_waermelehre:p-t-diagramm&#tripelpunkt|Tripelpunkt]] mit dem [[b_waermelehre:p-t-diagramm&#kritischer_punkt|kritischen Punkt]] verbindet und auf der der Phasenübergang stattfindet.
  
  
-===== toDo ===== + 
-  * wie unterscheiden sich Adiabaten und Isothermen in einem p-V-Diagramm+===== Maxwellgerade ===== 
-  * Diesel / Stirling Prozess+[{{ :b_waermelehre:kap3_realegase_3.png?200|}}] 
 + 
 +Für reale Gase ergibt die [[b_waermelehre:reales_gas&#van-der-waals-gleichung|Van-der-Waals-Gleichung]], umgestellt nach $p(V)$, 
 +$$ p(V)=\frac{nRT}{V-nb}-a\frac{n^2}{V^2} \, .$$ 
 +Diese Gleichung besitzt innerhalb des Sättiungsgebietes ein lokales Maximum und ein lokales Minimum, die in physikalischen Messungen nicht auftauchen (diese Punkte im Phasenraum sind instabil). Stattdessen beobachtet man einen geraden Verlauf, die sog. Maxwell-Gerade, oder auch Maxwell-Konstruktion. Begründet werden kann diese Gerade durch Energieerhaltung. 
 + 
 +++++ WeiterführendesHier klicken! |  
 +Genauer, die Maxwell-Gerade erhält man aus der Forderung, dass das chemische Potential von Flüssigkeit und Gas gleich sein muss, wenn beide Phasen im Gleichgewicht koexistieren. 
 +++++