meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
d_optikundatomphysik:beugung [24 June 2014 15:56] lead_optikundatomphysik:beugung [21 October 2020 20:12] (current) – ↷ Links adapted because of a move operation knaak@iqo.uni-hannover.de
Line 1: Line 1:
-====== Beugung ======+====== Brechung von Licht ====== 
 + 
 +Dieser Artikel beschreibt die Brechung von Licht, die nur mithilfe der Wellennatur ([[d_optikundatomphysik:wellenoptik|]]) des Lichts erklärbar ist.    
 + 
 +===== Brechung ===== 
 + 
 +<WRAP group> 
 +<WRAP 30% right> 
 +{{ :d_optikundatomphysik:snells_law2.svg |}} 
 +Lichtbrechung an der Grenzfläche zwischen zwei Medien mit $n_2 > n_1$ und $v_2 < v_1$. 
 + 
 +{{:d_optikundatomphysik:refraccion_de_un_lapiz.jpg?350|}} 
 +Lichtbrechung an einer Wasseroberfläche. Das Licht, welches das Wasser verlässt dringt in ein optisch dünneres Medium ein (Luft). Von Velual, GFDL, https://commons.wikimedia.org/w/index.php?curid=15011968 
 +</WRAP> 
 + 
 +Wieso wird Licht an einer Grenzfläche (z.B an einer Wasseroberfläche) eigentlich gebrochen? Bevor wir physikalische Modelle zur Erklärung heranziehen, betrachten wir ein einfaches Alltagsbeispiel, für das wir lediglich eine Annahme benötigen: 
 + 
 +  * Die Lichtgeschwindigkeit in einem Medium ist kleiner als im Vakuum. 
 + 
 +Dass sich eine elektromagnetische Welle (wie das Licht) in einem Medium, also z.B Wasser, langsamer ausbreiten kann als im luftleerem Raum können wir erstmal alle akzeptieren.  
 + 
 +__Zum Beispiel__: Wir fahren in einem Auto auf einer Landstraße. Der Fahrer wird müde und kommt etwas von der Straße ab, sodass die beiden rechten Reifen auf dem Grünstreifen in den Morast geraten. Plötzlich zieht das Auto abrupt rechts rüber, da die rechte Seite des Autos durch den Morast verlangsamt wird. Mit dem Licht ist es ähnlich. 
 + 
 +Dringt Licht aus einem optisch dünneren Medium ($n_1$) in ein optisch dichteres Medium ($n_2$) ein (oder umgekehrt), so wird es an der Grenzfläche gebrochen. $n$ ist der Brechungsindex oder auch Brechzahl gennant (mehr dazu unten). In welche Richtung es gebrochen wird lässt sich anhand des Beispiels gut merken. Senkrecht auf der Grenzfläche (im Beispiel wäre die Grenzfläche der Straßenrand) zeichnet man in der Physik das Lot ein. Ist das neue Medium $n_2$ (der Morast) dichter (die Geschwindigkeit vom Licht/Auto also langsamer) so wird das Licht zum Lot hin gebrochen ($n_2 > n_1$). Ist im gegenteiligem Fall das neue Medium optisch dünner, so wird das Licht vom Lot weg gebrochen. Man betrachte dazu die Skizze und stelle sich vor, ein Auto würde auf dem Lichtweg fahren. Wie stark das Licht gebrochen wird, also wie groß der __Winkel zum Lot__ (Winkel werden immer zum Lot gemessen) ist, kann mit dem Snelliusschem Brechungsgesetz (INTERNAL-LINK) berechnet werden.   
 + 
 +===Physikalisches Modell=== 
 + 
 +Ein einfache klassische Vorstellung von einer elektromagnetischen Welle in einem Medium kann man sich anhand des allseits bekannten Modells des harmonischen Oszillator bilden. Wir wollen nicht viele Formel über die Schwingungen von Elektronen herleiten (dazu sei verwiesen auf Demtroeder Band 2, siehe unten), sondern nur kurz eine Erklärung für die langsamere Geschwindigkeit der Welle im Medium.  
 +Tritt eine elektromagnetische Welle in ein Medium ein, so regt sie die dort vorhandenen Elektronen [[archiv:quasi-wikipedia:elektrostatik]] zur Schwingung an. Da Licht auch nur eine elektromagnetische Welle ist, wirkt eine Kraft auf die Elektronen, die diese aus ihrer Ruhelage auslenkt. Natürlich kann diese angeregte Schwingung nicht sofort (instantan) vorhanden sein, denn die Elektronen müssen erst beschleunigt werden. Deswegen hinkt die Schwingung der Elektronen etwas der elektromagnetischen Welle (Primärwelle) hinterher. 
 + 
 +Schwingende Ladungsträger erzeugen ihrerseits wiederum eine elektromagnetische Welle. Durch die Überlagerung der ursprünglichen Welle (Primärwelle) und der im Medium durch die Elektronen entstehenden Welle (Sekundärwelle) entsteht eine neue Welle, die aufgrund der hinterherhinkenden Sekundärwelle natürlich langsamer sein muss, als die ursprüngliche Primärwelle im Vakuum war. Also ist klar, dass in einem Medium die Welle langsamer sein muss (siehe GIF). 
 + 
 +<WRAP group> 
 +<WRAP 50% left> 
 +{{:d_optikundatomphysik:snells_law_wavefronts.gif |}} 
 +Darstellung von Wellenfronten einer Punktquelle unter berücksichtigung des Snelliusschen Brechungsgesetzes. Das Medium unterhalb der grauen Linie hat einen größeren Brechungsindex. Die Welle kann sich dementsprechend unterhalb der grauen Linie nur langsamer ausbreiten und an der Grenzfläche kommt es deswegen zur Brechung. 
 +</WRAP> 
 + 
 + 
 + 
 + 
 + 
 +</WRAP> 
 + 
 + 
 + 
 +++++ Demtroeder Band 2 | Kapitel 8 https://www.tib.eu/de/suchen/?id=198&tx_tibsearch_search%5Bquery%5D=wolfgang+demtr%C3%B6der+band+2+elektrizit%C3%A4t+und+optik&tx_tibsearch_search%5Bsearchspace%5D=tibub&tx_tibsearch_search%5Bsrt%5D=rk&tx_tibsearch_search%5Bcnt%5D=20 ++++ 
 + 
 + 
 +==== Brechungsindex/Brechzahl ==== 
 + 
 +Der Brechungsindex (auch Brechzahl oder optische Dichte genannt) ist eine Materialeigenschaft. Er gibt das Verhältnis von Vakuumlichtgeschwindigkeit $c_0$ zur Lichtgeschwindigkeit im Medium $c_M$ an. $$n=\frac{c_0}{c_M}$$ 
 +Wobei der Brechungsindex für Vakuum per Definiton exakt 1 ist. Für alle normal absorbierenden Materialien ist der Brechungsindex in der Regel größer 1.  
 + 
 +Die Abhängigkeit eines Brechungsindex von der Wellenlänge der elektromagnetischen Welle nennt man Dispersion (Internal Link). Zusätzlich kann der Brechungsindex auch in komplexer Form dargestellt werden: 
 + 
 +$$n=n_{real}+i \cdot n_{im} \ \ \text{oder}\ \  n=n_r - ik$$ 
 + 
 +Mit $i$ als imaginäre Einheit ($i^2=-1$) mal einer komplexen Zahl. Die komplexe Darstellung wird benötigt, wenn man sich mit dem Absorptionsverhalten eines Materials beschäftigen möchte und ist für das Verständnis von Beugung und Brechung nicht zwangläufig notwendig - sie sei daher hier nur erwähnt. 
  
-Die **Beugung** ist ein Phänomen, das nicht mehr mit der [[d_optikundatomphysik:geometrische_optik|geometrischen Optik]] verstanden werden kann, da diese dort ihre Grenzen erreicht. Um Beugung erklären zu können bedarf es der [[d_optikundatomphysik:wellenoptik|Wellenoptik]]. 
  
-Warum aber erreicht die geometrischen Optik hier ihre Grenzen?  
-Stellt Euch vor, Ihr schaltet bei geöffneter Zimmertür das Licht in diesem Zimmer an und in dem hinter der Tür liegende Zimmer ist es dunkel. 
-Wenn wir nun das Licht als Strahl betrachten und uns Pfeile denken, die den Weg des Lichts durch die Tür darstellen, dann dürfte nur genau der Bereich hinter der Tür hell sein, den die **geraden** Pfeile erreichen.  
-Doch genau das passiert nicht, denn auch seitlich der Tür breitet sich das Licht aus. Deshalb reicht die geometrische Optik für diesen Effekt nicht aus. 
  
-Also erklären wir die Beugung mit der Wellenoptik:  
-Das Licht trifft auf die Tür, welche ein Hindernis darstellt. An diesem Hindernis wird die Welle abgelenkt und es entstehen nach dem [[d_optikundatomphysik:lexikon&#huygenssche_prinzip|Huygensschen Prinzip]] neue Wellen an der Wellenfront. 
-Dadurch kann das Licht auch in die Bereiche kommen, die durch [[d_optikundatomphysik:geometrische_optik|geometrische Optik]] nicht erklärt werden können.  
-Außerdem kann es durch Überlagerung dieser neuen Elementarwellen zu [[d_optikundatomphysik:interferenz|Interferenz]] kommen.