meta data for this page
This is an old revision of the document!
Drehpendel -- Gruppe304
Der Versuch wurde durchgeführt von: Tim Achtzehn und Adriaan Richert
Die Wiki-Seite wurde angelegt am: 18 January 2021 15:00
Einleitung
Willkommen zu unserer Wiki-Seite des zweiten Online-Versuches. Hier präsentieren wir Bilder, Tabellen und ähnliches, um den Bericht auszudünnen und zu untermauern.
Vorüberlegungen
Die beim Beschleunigen geleistete Arbeit eines rotierenden Körpers wird mit $W_{Beschleunigung} = \frac{1}{2} J\cdot \dot{\phi}^2$ berechnet. Diesen Zusammenhang nutzen wir, um die Bewegungsgleichung herzuleiten:
\begin{alignat}{3} & \quad \quad \quad D \cdot d\phi &&= dW \quad &&&|W_{Beschleunigung} = \frac{1}{2} J\cdot \dot{\phi}^2 \\ &\iff D \cdot d\phi &&= \frac{1}{2} J d\dot{\phi}^2 \quad &&&|\cdot \frac{1}{dt} \\ &\iff D \cdot d\dot{\phi} &&= \frac{1}{2} J \frac{d\dot{\phi} \cdot \dot{\phi}}{dt} \\ &\iff D \cdot d\dot{\phi} &&= \frac{1}{2} J \frac{d\dot{\phi}}{dt} \cdot \dot{\phi} + \frac{d\dot{\phi}}{dt} \cdot \dot{\phi} \\ &\iff D \cdot d\dot{\phi} &&= \frac{J \cdot \not{2} \cdot \ddot{\phi} \cdot \dot{\phi}}{ \not{2}} \quad &&&|:\dot{\phi}\\ &\iff D &&= J \ddot{\phi} \quad &&&| D = -D_r \cdot \phi \\ &\iff J\ddot{\phi} &&= -D_r \cdot \phi \end{alignat}
Diese Bewegungsgleichung wird durch die harmonische Schwingung $\phi(t) = \phi_0 \cos(\omega \cdot t)$ gelöst. Unsere Anfangsbedingungen zum Zeitpunkt $t=0$ sind dabei die Auslenkung $\phi(0) = \phi_0 \cos(0)= \phi_0 \cdot 1 = \phi_0$ und die Geschwindigkeit von $\dot{\phi(0)} = \omega \cdot \phi_0 \sin(0)= \omega \cdot \phi_0 \cdot 0 = 0$.